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Abstract
Using the two-dimensional (2D) N = 4 sigma model, with U(1)r gauge
symmetry, and introducing the ADE Cartan matrices as gauge matrix charges,
we build ‘toric’ hyper-Kahler eight real-dimensional manifolds X8. Dividing
by one toric geometry circle action of X8 manifolds, we present examples
describing quotients X7 = X8

U(1) of G2 holonomy. In particular, for the Ar
Cartan matrix, the quotient space is a cone on an S2 bundle over r intersecting
WCP2

(1,2,1) weighted projective spaces according to the Ar Dynkin diagram.

PACS numbers: 11.25.Mj, 02.40.Tt, 11.30.Pb

1. Introduction

Over the past few years, there has been an increasing interest in studying string dualities. One
of the important consequences of these studies is that all superstring models are equivalent in
the sense that they correspond to different limits in moduli space of the same theory, called
M-theory [1–3]. The latter, which is considered nowadays as the best candidate for the
unification of the weak and strong coupling sectors of superstring models, is described, at low
energies, by an eleven-dimensional supergravity theory.

More recently, a special interest has been shown in the compactification of the M-theory
on seven real manifoldsX7 with non-trivial holonomy, in order that these manifolds provide a
potential point of contact with low energy semi-realistic physics from M-theory. In particular,
one can obtain four-dimensional (4D) theory with N = 1 supersymmetry by compactifying
M-theory on R1,3 × X7 where X7 denotes a seven manifold with G2 holonomy [4–11]1. In
this regard, 4D N = 1 resulting physics models depend on geometric properties of X7. For
instance, ifX7 is smooth, the low energy theory contains, in addition to N = 1 supergravity,only
Abelian gauge group and neutral chiral multiplets. However, non-Abelian gauge symmetries
with chiral fermions can be obtained by considering limits where X7 develops singularities

1 The latter is the maximal subgroup of SO(7) which can break the eight-dimensional spinorial representation of
SO(7) to the seven fundamental representations of G2 plus one singlet ( 8 → 7 + 1).
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[10, 11]. For this reason, it is interesting to study M-theory on seven singular manifolds
with G2 holonomy. Following [11], an interesting analysis for building such spaces is to
consider the quotient of a conical hyper-Kahler eight manifoldsX8 by a U(1) symmetry. This
approach, which is called the unfolding of the singularity, guarantees the G2 holonomy group
of the quotient space X8

U(1) . A remarkable feature of this method, which may be related to

two-dimensional (2D) N = 4 sigma model Calabi–Yau fourfold construction CY 4, is that
the X8

U(1) space solutions differ by what kind of U(1) symmetry is chosen and moreover the
matter fields, in four dimensions, are obtained using techniques similar to those in geometric
engineering of quantum field theory [12–15].

The aim of this work is to contribute in this direction by considering models with the
N = 4 2D sigma model ADE Cartan matrix gauge charges for building X8 manifolds. This
study is motivated by the following points: (1) Actually, these vector charges go beyond those
given in the first example studied in [11], where the matrix charge of the hypermultiplets φi ,
under U(1)r gauge symmetry, was

qai = −δai−1 + δai a = 1, . . . , r. (1.1)

(2) They may give an analogue connection appearing between the toric Calabi–Yau geometries,
used in string theory compactifications, and the structures of ADE Lie algebras. The latter
may lead to an analysis similar to that in the geometric engineering method of quantum field
theory embedded in string theory.

It was suggested in [11] that the unfolding of the singularity may be adapted to other
examples ofX8 manifolds, in particular toric hyper-Kahler manifolds. In this paper, we would
present a new class of these X8 manifolds, which will be called toric hyper-Kahler eight
manifoldsX8, with the Calabi–Yau condition in the sigma model construction given by

∑
i

qai = 0. (1.2)

We will refer to such manifolds as Calabi–Yau fourfolds. Then we give their quotients by a
U(1) group symmetry using toric geometry circle actions. Our way involves two steps: first,
we introduce the ADE Cartan matrices as 2D N = 4 U(1)r linear sigma model matrix gauge
charges. Second, mimicking the analysis of [11] and using toric geometry circle actions,
we discuss the construction of a new class of the quotients X8

U(1) of G2 holonomy group. In

particular, for the Ar Cartan matrix, the quotient space is a cone on an S2 bundle over r
intersecting WCP2

(1,2,1) weighted projective spaces according to the Ar Dynkin geometry.
The organization of this paper is as follows: in section 2, we give an overview on aspects

of the 2D N = 4 linear sigma model. Then we give examples illustrating the field theoretical
construction of hyper-Kahler manifolds. In section 3, we introduce the ADE Cartan matrices
as matrix gauge charges in the 2D N = 4 field theory construction of X8 manifolds. For
the Ar Lie algebra, the moduli space of the classical theory is given by the cotangent bundle
over r intersecting WPC2

(1,2,1) weighted projective spaces according to the Ar Dynkin graph,
extending the Ar singularity of K3 surfaces described by N = 2 type IIA superstring sigma
model used in the geometric engineering method. In section 4, we identify the U(1) symmetry
group with the toric geometry circle actions of X8 to present quotients X7 = X8

U(1) of G2

holonomy. For the Ar Cartan matrix gauge charge, the geometry is a cone on an S2 bundle
over r intersecting WCP2

(1,2,1) weighted projective spaces according to theAr Dynkin diagram.
Our conclusion will be given in section 5.
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2. N = 4 sigma model approach

In this section, we review the main lines of the N = 4 sigma model approach for building
the hyper-Kahler manifolds involved in the study of superstring, M-theory and F-theory,
compactifications, Yang–Mills small instant singularities and more general in supersymmetric
field theories with eight supercharges [16–18]. For this purpose, consider 2D N = 4
supersymmetric U(1)r gauge theory with n hypermultiplets φi (i = 1, . . . , n) of a matrix
charge qai (a = 1, . . . , r), under U(1)r gauge symmetry, and r 3-vectors FI coupling �ξa . The
equations defining the hyper-Kahler moduli space of this classical gauge theory are given by
the following D-terms:

∑
i

qia
[
φαi φ̄iβ + φiβφ̄

α

i

] = �ξa �σαβ. (2.1)

The double indices (i, α) of φαi refer to component field doublets of the n hypermultiplets, and
�σαβ are the traceless 2 × 2 Pauli matrices. For later use, it is interesting to note the following
points:

(1) Equations (2.1) have a formal analogy with the D-flatness equations of 2D N = 2
U(1)r toric sigma model involved in the study of type II superstring compactifications on ALE
spaces with ADE singularities [13]. The latter are given by

n∑
i=1

qai |xi|2 = Ra a = 1, . . . , r (2.2)

where r is the rank of the ADE Lie algebras and qai , up some details, the minus of the
corresponding Cartan matrices satisfying the Calabi–Yau condition

n∑
i=1

qai = 0. (2.3)

Equation (2.2) has a nice geometrical interpretation in terms of toric geometry. This has been
an interesting interplay between 2D N = 2 sigma models and toric geometry. In this way, (2.2)
has a toric diagram which consists of n vertices {vi}, in the standard lattice Zn−r, satisfying
the following constraint equations:

n∑
i=1

qai vi = 0 a = 1, . . . , r. (2.4)

For instance, if one takes r = 1, this space describes the (n − 1)-dimensional weighted
projective with weights qi .

(2) For each U(1) factor, there are three real constraint equations transforming as an
isotriplet of SU(2) R-symmetry (SU(2)R) acting on the hyper-Kahler structures.

(3) Using the SU(2)R transformations

φα = εαβφβ ε12 = ε21 = 1 (φα) = φα (2.5)

and replacing the Pauli matrices by their expressions, the identities (2.1) can be split as follows:

n∑
i=1

qai

(∣∣φ1
i

∣∣2 − ∣∣φ2
i

∣∣2
)

= ξ3
a (2.6)

n∑
i=1

qai φ
1
i φ

2
i = ξ1

a + iξ2
a (2.7)
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n∑
i=1

qai φ
2
i φ

1
i = ξ1

a − iξ2
a. (2.8)

Note that these equations have features similar to those described in [16] leaving only half the
supersymmetry of the gauge model.

(4) After dividing the moduli space of zero energy states of the classical gauge theory
(2.1) by the action of the U(1)r gauge symmetry, we find precisely a toric hyper-Kahler variety
X4(k−r) of 4(k − r) real dimensions. This construction is called the hyper-Kahler quotient
extending the Kahler one involved in 2D N = 2 toric sigma model [16–18].

(5) The solutions of equations (2.1) depend on the values of the FI couplings. For the
case where ξ1 = ξ2 = 0 and ξ3 > 0, it is not difficult to see that equations (2.1) describe the
cotangent bundle over a toric variety defined by

n∑
i=1

qai

∣∣φ1
i

∣∣2 = ξ3
a . (2.9)

Indeed, if we set all φ2
i = 0, the φ1

i , modulo the complexified U(1)r gauge group, determine a
toric variety Cn

C∗ r of 2(n− r) real dimensions, see equations (2.2). The equations (2.6)–(2.7)
mean that the φ2

i define the cotangent fibre directions over the toric variety given by (2.9). To
see this feature, we assume that ξ1

a = ξ2
a = 0, a = 1 and we set qai = qi = 1, so we have

n∑
i=1

(∣∣φ1
i

∣∣2 − ∣∣φ2
i

∣∣2
)

= ξ3 (2.10)

and
n∑
i=1

φ1
i φ

2
i = 0. (2.11)

Equation (2.10), for φ2
i = 0, defines the CPn−1 projective space while equation (2.11) means

that φ2
i parameterizes the cotangent directions on it. In what follows, we give two extra

examples illustrating this analysis and reconsidering the example given in [11]. In the first
example, we consider a 2D N = 4 U(1) linear sigma model with two hypermultiplets of a
vector charge (1, −1). The D-flatness conditions of this model read

(∣∣φ1
1

∣∣2 − ∣∣φ1
2

∣∣2
)

−
(∣∣φ2

1

∣∣2 − ∣∣φ2
2

∣∣2
)

= ξ3 (2.12)

φ1
1φ

2
1 − φ1

2φ
2
2 = 0 (2.13)

φ2
1φ

1
1 − φ2

2φ
1
2 = 0. (2.14)

Permuting the role of φ1
2 and φ̄2

2, and making the following field change ϕ1 = φ1
1 , ϕ2 = −φ̄2

2,
ψ1 = φ2

1 and ψ2 = φ̄1
2, the constraint equations (2.12)–(2.14) become

(|ϕ1|2 + |ϕ2|2)− (|ψ1|2 + |ψ2|2) = ξ3 (2.15)

ϕ1ψ1 + ϕ2ψ2 = 0 (2.16)

ϕ1ψ1 + ϕ2ψ2 = 0 (2.17)

and describe a cotangent bundle over a CP1 projective. In this way, the CP1 is defined by the
following equation:

|ϕ1|2 + |ϕ2|2 = ξ3. (2.18)
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Recall in passing that the cotangent bundle over CP1, which is known by the resolved A1

singularity of K3 surfaces, is isomorphic to C2

Z2
and plays a crucial role in the study of the

non-perturbative limit of type II superstring dynamics in six and four dimensions [13–15].
The second example we want to consider deals with the generalization of the first one. This
concerns a 2D N = 4 U(1)r linear sigma model with (r + 1) hypermultiplets of a matrix charge
satisfying (1.1). Using the same procedure, the D-flatness conditions (2.1) become

(|ϕa−1|2 + |ϕa|2)− (|ψa−1|2 + |ψa|2) = ξ3
a (2.19)

ψa−1ϕa−1 + ϕaψa = 0 (2.20)

ϕa−1ψa−1 + ψaϕa = 0. (2.21)

The solution of these equations describes the cotangent bundle over r intersecting complex
curves CP1. In the limit when all ξ3

a go to zero, the CP 1 shrink and one ends with the
Ar singularity of local K3 surfaces. Note that this example has been used in [11] to
construct seven real-dimensional manifolds X7 of G2 holonomy group from the quotient
of X8 hyper-Kahler eight real-dimensional manifolds by a U(1) group symmetry. These
eight-dimensional spaces are obtained using the 2D N = 4 U(1)(r−1) linear sigma model
with (r + 1) hypermultiplets, where the missing U(1) invariance is explored to get the
quotient X8

U(1) of G2 holonomy group [11]. In what follows we want to give a new class of

X8 manifolds, which will be called toric hyper-Kahler Calabi–Yau fourfolds (CY 4 = X8)

by introducing the ADE Cartan matrices instead of the gauge matrix charge given in
equation (1.1).

3. Toric hyper-Kahler eight manifolds with Calabi–Yau condition

We start this section by recalling that complex Calabi–Yau manifolds are the best ingredients
for obtaining semi-realistic models of superstrings/M/F-theory [18–20], with minimal
supercharges in lower dimensions. In particular for later use, Calabi–Yau fourfolds,
compact, non-compact, singular or non-singular, are considered as ways for getting N = 1
supersymmetric models in four dimensions from the F-theory compactifications [20, 21]. In
M-theory context, compatifications on manifolds of G2 holonomy can be effectively described
by 4D N = 1 supersymmetry. Furthermore, from the supersymmetry breaking viewpoint, the
above geometries, which preserve both the same supercharges, in particular 1

8 of initial ones of
the uncompactified theory, have a similar role in superstrings and M-theory compactifications.
From this physical argument and the string duality results, connecting type IIA and type
IIB strings, we think that there are at least two natural questions. The latter are as follows:
(1) Does there exist a 4D duality connecting M-theory on manifolds of G2 holonomy and
F-theory on Calabi–Yau fourfolds? (2) Or does there exist a link between the corresponding
geometries (manifolds of G2 holonomy and Calabi–Yau fourfolds)? These questions, which
are quite similar to the link between M-theory on manifolds of G2 holonomy and heterotic
strings on Calabi–Yau threefolds, need detailed study. However, here we try to give a modest
comment on the second one; while the first one will be dealt with in future work. This
comment is based on the following known points:

(i) Manifolds with G2 holonomy can be constructed as U(1) quotients of eight manifolds.
(ii) The maximal group of automorphisms in eight dimensions is SO(8). Using Dynkin

geometries this group, including the SU(4) group, can give the G2 group.
(iii) Eight manifolds can have hyper-Kahler constructions in terms of the N = 4 sigma model.
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Combining these points with the Calabi–Yau condition
∑

i q
a
i = 0 in the sigma model

approach, one may say that seven real-dimensional manifolds of the G2 holonomy group may
be constructed from hyper-Kahler eight manifolds with the Calabi–Yau condition. In what
follows, we refer to such manifolds as Calabi–Yau fourfold geometries. In this way, the G2

manifolds can be obtained using quotients by one finite circle, preserving the supercharges.
In the present study, following the ideas of [11], we would discuss the construction of seven-
dimensional manifolds with G2 holonomy group from Calabi–Yau fourfold geometry physics
data, but with a different realization of the U(1) group symmetry for obtaining the quotient.
This study involves two steps. First we will introduce, in the field theoretical construction
of Calabi–Yau fourfolds X8, the ADE Cartan matrices as 2D N = 4 linear sigma model
matrix gauge charges. Second, mimicking the method of [11] and using toric geometry circle
actions, we will discuss quotients X8

U(1) of G2 holonomy group which will be given in the next

section. Roughly speaking, the toric hyper-Calabi–Yau fourfolds CY 4 = X8 may be viewed
as the moduli space of the 2D N = 4 supersymmetric U(1)r gauge theory with (r + 2) φαi
hypermultiplets (4(r + 2 − r) = 8) with a matrix charge qia with the Calabi–Yau condition
(1.2). In what follows, we will consider a matrix charge going beyond equation (1.1). Our
choice will be given by ADE Cartan matrices. For simplicity, we first consider the Ar Lie
algebra where the Cartan matrix is given by

qai = −2δai + δai−1 + δai+1 a = 1, . . . , r (3.1)

satisfying naturally the Calabi–Yau condition
∑

i q
i
a = 0. Putting these equations into the

D-flatness equations (2.1), one gets the following system of 3r equations:
(∣∣φ1

a−1

∣∣2
+

∣∣φ1
a+1

∣∣2 − 2
∣∣φ1
a

∣∣2
)

−
(∣∣φ2

a−1

∣∣2
+

∣∣φ2
a+1

∣∣2 − 2
∣∣φ2
a

∣∣2
)

= ξa (3.2)

φ1
a−1φ

2
a−1 + φ1

a+1φ
2
a+1 − 2φ1

aφ
2
a = 0 (3.3)

φ2
a−1φ

1
a−1 + φ2

a+1φ
1
a+1 − 2φ2

aφ
1
a = 0. (3.4)

We first solve these equations for the simple example of U(1) gauge theory. Then we will give
the result for the U(1)r gauge model. For r = 1, the above equations reduce to

(∣∣φ1
0

∣∣2
+

∣∣φ1
2

∣∣2 − 2
∣∣φ1

1

∣∣2
)

−
(∣∣φ2

0

∣∣2
+

∣∣φ2
2

∣∣2 − 2
∣∣φ2

1

∣∣2
)

= ξ (3.5)

φ1
0φ

2
0 + φ1

2φ
2

2 − 2φ1
1φ

2
1 = 0 (3.6)

φ2
0φ

1
0 + φ2

2φ
1

2 − 2φ2
1φ

1
1 = 0. (3.7)

To handle these D-terms equations, it should be interesting to note that they are quite similar
to equations (2.10)–(2.11), and also to (2.12)–(2.14). After permuting the role of φ1

2 and φ2
2 ,

equations may be rewritten as
(∣∣φ1

0

∣∣2
+

∣∣φ1
2

∣∣2
+ 2

∣∣−φ2
1

∣∣2
)

−
(∣∣φ2

0

∣∣2
+

∣∣φ2
1

∣∣2
+ 2

∣∣φ1
1

∣∣2
)

= ξ (3.8)

φ1
0φ

2
0 + φ1

2φ
2

2 + 2φ1
1

(−φ2
1

) = 0 (3.9)

φ2
0φ

1
0 + φ2

2φ
1

2 + 2
(−φ2

1

)
φ1

1 = 0. (3.10)

Making the following field changes,

φ1
0 = ϕ1 φ2

0 = ψ1 φ1
1 = ϕ2 φ2

1 = ψ2 − φ
2
1 = ϕ3 φ

1
1 = ψ1

the above equations become
(|ϕ1|2 + |ϕ3|2 + 2|ϕ2|2

) − (|ψ1|2 + |ψ3|2 + 2|ψ2|2
) = ξ3 (3.11)
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ϕ1ψ1 + ϕ3ψ3 + 2ϕ2ψ2 = 0 (3.12)

ϕ1ψ1 + ϕ3ψ3 + 2ϕ2ψ2 = 0. (3.13)

Using similar analysis to in the previous section, one notes that the above equations describe
a cotangent bundle over WCP2

(1,2,1) weighted projective space. A way to see this feature is
to use the link between the N = 2 sigma model and toric geometry technics. Indeed, taking
ψ1 = ψ2 = ψ3 = 0, equations (3.11)–(3.13) reduce to

|ϕ1|2 + |ϕ3|2 + 2|ϕ2|2 = ξ3 (3.14)

which can be encoded in a toric diagram. In this diagram, one has three vectors v1, v2 and v3

in Z2 lattice such that

v1 + v3 + 2v2 = 0 (3.15)

where the coefficients of vi are exactly those of ϕi in (3.14). Note that equation (3.15) describes
a particular geometry of that given in (2.4). Using the toric geometry language, equation (3.15)
defines naturally a WCP2

(1,2,1) weighted projective space, where ξ3 is a Kahler real parameter
controlling its seize. Equations (3.11)–(3.13), for generic value of ψi , can be interpreted to
mean thatψi parameterizes the fibre cotangent directions over WCP2

(1,2,1). Since the subset of

(3.11) with ψi = 0 is a WCP2
(1,2,1) weighted projective space and ϕ1ψ1 + ϕ3ψ3 + 2ϕ2ψ2 = 0

is the analogue of equation (2.11), thus the space of solutions of (3.11)–(3.13) is isomorphic
to the cotangent space over WCP2

(1,2,1), T
∗(WCP2

(1,2,1)

)
. In the general case corresponding

to the U(1)r gauge theory, if we take all the ξa as non-zero, it is not too difficult to see that
equations (3.2)–(3.4) describe the cotangent bundle over r intersecting WCP2

(1,2,1) weighted
projective spaces. This means that the base geometry of the cotangent bundle consists of r
intersecting WCP2

(1,2,1) according to theAr Dynkin diagram, instead of one projective space in
the case of U(1) gauge theory. In the limit that some ξa are zero, we obtain a singular geometry.
Actually, this geometry may be used to extend the intersecting CP1 projective spaces of ALE
spaces involved in the geometric engineering method of the quantum field theory [13–15]. We
will conclude this section by noting that this analysis of the Ar Lie algebra may be extended
to the others DE Lie algebras. However, these algebras contain trivalent vertex Dynkin
geometries, which complicates the computation. Recall that the trivalent Dynkin geometry
involves a central node intersecting three other nodes once; moreover, this geometry has been
used in the geometric engineering of quantum field theories, in particular in the introduction of
fundamental matters in a chain of SU product gauge group with N = 2 bifundamental matters.
In toric sigma model approach, the corresponding vector charge, on the Calabi–Yau condition,
is given by

qi = (0, . . . ,−2, 1, 1, 1, 0, . . . , 0,−1)

instead of the bivalent geometry (3.1). A priori there are different ways one may follow to
overcome this problem. A naive way is to delete these trivalent vertices. In this case, the
D-flatness constraint equations have similar solutions to that of the An Lie algebra. However
a tricky method is to leave this and use the trivalent geometry results involved in the elliptic
fibrations singularities over the complex plane. In this way, the base geometry of X8 may be
given by three chains of intersecting WCP2

(1,2,1) according to the trivalent geometry.
In what follows, we will discuss the corresponding seven real-dimensional manifolds of

G2 holonomy group using U(1) quotients. Following the ideas of [11], we should look for
a U(1) group symmetry acting on X8. As mentioned before, there are many ways one may
follow to choose the U(1) group action of X8. In this regard, the solutions differ by what
kind of U(1) symmetry is chosen. Two kinds of solutions are given in [11]. But here we will
consider another way. The latter is inspired by the toric geometry circle actions.
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4. On the quotient space X7 = X8
U(1) of G2 holonomy

Having constructed toric hyper-Kahler Calabi–Yau fourfoldsX8 associated with ADE Cartan
matrices sigma model gauge charges, we are now in the position to carry out quotient spaces
X7 = X8

U(1) of G2 holonomy group using circle actions involved in toric varieties. Before
doing this, let us mention some things about toric geometry. The latter is a powerful tool for
studying n-dimensional complex manifolds exhibiting toric circle actions U(1)n which allow
us to encode the geometric properties of the complex spaces in terms of simple combinatorial
data of polytopes
 of the Rn real space [22–25]. The simple example of toric varieties is the
complex plane C. The latter admits a U(1) toric action

z → z eiθ (4.1)

which has a fixed point at z = 0. Thus the toric geometry of C can be viewed as a circle fibred
on a half line parameterized by |z|. The circle, which is determined by the action of θ , shrinks
at z = 0. This realization can be generalized easily to Cn space where we have a T n fibration,
parameterized by the angular coordinates θi , over an n-dimensional real base parameterized
by

∣∣z2
i

∣∣. The second example we want to give is the CP1 projective space. This space also has
a U(1) toric action having two fixed points describing respectively north and south poles of the
two sphere S2 ∼ CP1. Thus the toric geometry of CP1 is given by an interval fibred by S1 with
zero size at the endpoints of the interval. Using these ideas, the cotangent bundle over CP1 can
also be viewed as a toric space. In this way, we have two circle actions on this space. The first
one corresponds to the action on the CP1 base space and the other circle acts on the fibre
cotangent direction. Our next example will be the two complex dimensional projective space
CP2. The latter has a U(1)2 toric action exhibiting three fixed points defining a triangle in the
R2 real space. The toric geometry of this manifold is described by a triangle of R2 fibred by a
two real-dimensional torus T 2 which degenerates to an S1 circle on the three edges and shrinks
to a point on the endpoints. The cotangent bundle over CP2 is a 4D (eight real) local toric
geometry, where we have two extra circle actions coming from the fibre cotangent directions.
Note that this analysis is similar to the WCP2, in particular WCP2

(1,2,1), and can be extended
easily to higher dimensional (weighted) projective spaces. In what follows, we will consider
the above toric geometry circle actions to identify the U(1) group symmetry of quotient spaces
X7 = X8

U(1) .
Let us consider the simple example of the U(1) gauge theory with three hypermultiplets.

In this case, the geometry X8 can be viewed as C2 bundle over a WCP2
(1,2,1). This manifold

has four toric geometry circle actions U(1)2base × U(1)2fibre; two of them correspond to the
WCP2

(1,2,1) base space denoted by U(1)2base while the remaining ones U(1)2fibre act on the fibre
cotangent directions. In what follows, we want to divide by one finite circle toric geometry
action for obtaining seven real manifolds. Mimicking the analysis of [11] and identifying the
U(1) group symmetry of the quotient with one finite fibre circle action

X7 = X8

U(1)fibre
(4.2)

we can obtain a seven-dimensional geometry. Since C2

U(1) = R+ × C, the quotient space is

now an R+ × C bundle over a WCP2
(1,2,1). By compactifying the C complex plane, which can

be done by adding a point at infinity, this space will be an R+ × S2 bundle over WCP2
(1,2,1).

As in [11], this geometry is a cone on an S2 bundle over WCP2
(1,2,1) of G2 holonomy. More

generally, if we consider the U(1)r gauge theory with the Ar Cartan matrix gauge charges and
(r + 2) hypermultiplets, then the quotient space is a cone on an S2 bundle over r intersecting
WCP2

(1,2,1) weighted projective spaces according to the Ar Dynkin diagram.
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Finally, a naive way to study the singularities of these X7 manifolds is to consider the
identification structure of the weighted projective spaces. The latter are not generally smooth
because non-trivial fixed points under the variable identifications lead to singularities. To
see this feature, consider the identification structure of WCP2

(1,2,1) defined by introducing
three homogeneous complex coordinates z1, z2, z3 not all of them simultaneously zero with a
projective relation:

(z1, z2, z3) ≡ (
λz1, λ

2z2, λz3
)
. (4.3)

Note, in passing, that these (z1, z2, z3) homogeneous complex coordinates can be related
respectively to ψ1, ψ2 and ψ3 fields of the sigma model construction. Finally, it is not hard to
show that this space is singular. Indeed, if we take λ = −1, equation (4.3) reduces to

(z1, z2, z3) ≡ (−z1, z2,−z3) (4.4)

and so we have a Z2 orbifold singularity at (z1, z2, z3) = (0, z2, 0).

5. Conclusion

In this paper, we have contributed in the M-theory compactifications to four dimensions.
This involves the compactification on seven manifolds of G2 holonomy group, leading to
4D N = 1 supersymmetric models. In particular, we have constructed a new class of toric
hyper-Kahler eight manifolds giving G2 holonomy spaces after dividing by one finite toric
geometry circle action. This has been proceeded in two steps. We have first introduced the
ADE Cartan matrices as matrix gauge charges in the 2D N = 4 field theoretical construction
of toric hyper-Kahler eight manifolds X8. In particular, the solution for the Ar Lie algebra is
described by the cotangent bundle over r intersecting WCP2

(1,2,1) weighted projective spaces
according to the Ar Dynkin diagram. Actually these spaces may extend the geometry of Ar
ALE space, described by the 2D N = 2 type IIA superstring sigma model used in the geometric
engineering method. Second, we have used the toric geometry circle actions of X8 to build
quotientsX7 = X8

U(1) of G2 holonomy group.
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